
Automata Guided Reinforcement Learning And
Skill Composition

Author Names Omitted for Anonymous Review. Paper-ID [add your ID here]

Abstract—Tasks with complex structures and long horizons
pose a challenge for reinforcement learning (RL) agents. Skills
learned through RL often generalize poorly across tasks and
re-training is usually necessary. We propose a framework that
combines temporal logic (TL) with reinforcement learning to
address these problems. We also present a technique that
constructs new skills from existing ones with no additional
exploration. Our method allows for convenient specification of
complex temporal dependent tasks using logical expressions and
automatically generates rewards that align with the overall task
goal. We provide theoretical results for our method and evaluate
it in both simulation and experiments.

I. INTRODUCTION

Learning robotic skills for tasks with complex structures
and long horizons poses a significant challenge for current re-
inforcement learning methods. Recent endeavors have focused
on lower level motor control tasks such as grasping [17] [13],
dexterous hand manipulation[18], lego insertion [9]. However,
demonstration of robotic systems capable of learning controls
for tasks that require logical execution of subtasks has been
less explored.

Reward engineering is time-consuming for low-level control
tasks where efforts in reward shaping [20] and tuning are
often necessary. This process is much more difficult when the
structure of the tasks complicates. The authors of [22] have
shown that it is already a considerable effort to specify the
reward function for block-stacking tasks.

Policies learned using reinforcement learning aim to max-
imize the given reward function and are often difficult to
transfer to other problem domains. Skill composition is the
process of constructing new skills out of existing ones (poli-
cies) with little to no additional learning. In stochastic optimal
control, this idea has been adopted by [27] and [5] to construct
provably optimal control laws based on linearly solvable
Markov decision processes.

We propose to address the above problems by using formal
languages for task specification, particularly syntactically co-
safe truncated linear temporal logic (scTLTL). We take ad-
vantage of the equivalence between an scTLTL formula and a
finite state automaton (FSA) to construct a reward that aligns
with the specification. We also use the FSA to achieve skill
composition. Compared to most heuristic reward structures
used in the RL literature, our formal specification language
has the advantage of semantic rigor and interpretability.

Our contributions are as follows:
• we provide a framework that integrates temporal logic

with reinforcement learning. We show that our framework

generates rewards that are aligned with the task goals and
results in a policy with interpretable hierarchy.

• we introduce a method to compose policies learned using
the above framework. We build on the results of [29]
and prove that the composed policy is optimal in both
−AND− and −OR− task compositions. We show that
incorporating temporal logic allows us to compose tasks
of greater logical complexity.

• we evaluate our method in simulation (discrete state
and action spaces) and experimentally on a Baxter robot
(continuous state and action spaces).

II. RELATED WORK

Using temporal logic in a RL setting has been explored in
the past. The authors of [7] and [4] use temporal logic and
automata to solve the non-Markovian reward decision process
(NMRD). In [1], the authors take advantage of the robustness
degree of signal temporal logic to guide the learning process.
The authors of [32] incorporate maximum-likelihood inverse
reinforcement learning with addition constraints of the task
in the form of co-safe linear temporal logic. However, their
method only supports discrete state and action spaces. In [12],
the authors propose a reward machine, which in effect is an
FSA. However, the user is required to manually design the
reward machine. Our method generates the reward machine
directly from TL specifications. In [2], the authors use an FSA
as a safety measure that supervises the actions sent to the
system by the agent.

Hierarchical RL has been used to increase sample efficiency
as well as task generalization [26]. Even though our method
does not explicitly assume a hierarchical setup or requires a
hierarchical RL algorithm to train, combining scTLTL with
MDP naturally results in a hierarchical policy that can be
trained end-to-end with any RL algorithm.

Recent efforts in skill composition have mainly adopted the
approach of combining value functions learned using different
rewards. [21] constructs a composite policy by combining the
value functions of individual policies using the Boltzmann
distribution. With a similar goal, [33] achieves task space
transfer using deep successor representations [14]. However, it
is required that the reward function be represented as a linear
combination of state-action features. The authors of [3] use
olicy sketches for composition. However, only sequential sub-
task execution is supported.

The authors of [10] have showed that when using energy-
based models [8], an approximately optimal composite policy
can result from taking the average of the Q-functions of

existing policies. The resulting composite policy achieves
the −AND− task composition i.e. the composite policy
maximizes the average reward of individual tasks. In [29], the
authors took this idea a step further and showed that by com-
bining individual Q-functions using the log-sum-exponential
function, the −OR− task composition (the composite policy
maximizes the (soft) maximum of the reward of constituent
tasks) can be achieved optimally.

Multi-task learning [3] and meta-learning [6] are often used
to achieve few-shot/zero-shot task generalization. Here we
make the distinction between skill composition (our focus) and
multi-task learning/meta-learning where the former constructs
new policies from a library of learned policies and the latter
often learns and generalizes from a predefined set of tasks/task
distributions. Contrasting with multi-task/meta-learning is not
within the scope of this paper.

In our framework, skill composition is accomplished by
taking the product of the finite state automata (FSA). Instead
of interpolating/extrapolating among learned skills/latent fea-
tures [21][33] , our method is based on graph manipulation of
the FSAs. Therefore, the outcome is more transparent. Com-
pared with previous work on skill composition, we impose no
constraints on the policy representation or the problem class.
To the best of our knowledge, this paper presents the first effort
in using temporal logic for skill composition and demonstrates
its applicability on real robotic systems.

III. PRELIMINARIES

In this section, we start by introducing the entropy-
regularized reinforcement learning and its relevant results on
policy composition. Then we introduce scTLTL using simple
examples along with the definition of the FSA.

A. Entropy-Regularized Reinforcement Learning and Q-
Composition

We start with the definition of a Markov Decision Process.

Definition 1. An MDP is defined as a tuple M =
〈S,A, p(·|·, ·), r(·, ·, ·)〉, where S ⊆ IRn is the state space ;
A ⊆ IRm is the action space (S and A can also be discrete
sets); p : S × A × S → [0, 1] is the transition function with
p(s′|s, a) being the conditional probability density of taking
action a ∈ A at state s ∈ S and ending up in state s′ ∈ S;
r : S × A × S → IR is the reward function with r(s, a, s′)
being the reward obtained by executing action a at state s and
transitioning to s′.

In entropy-regularized reinforcement learning [25], the goal
is to maximize the following objective

J(π) =

T−1∑
t=0

Eπ[rt + αH(π(·|st))], (1)

where π : S × A → [0, 1] is a stochastic policy. Eπ is
the expectation following π. H(π(·|st)) is the entropy of
π. α is the temperature parameter. In the limit α → 0,
Equation (1) becomes the standard RL objective. The soft

Q-learning algorithm introduced by [8] optimizes the above
objective and finds a policy represented by an energy-based
model

π?(at|st) ∝ exp(−E(st, at)) (2)

where E(st, at) is an energy function that can be represented
by a function approximator.

Let rentt = rt + αH(π(·|st)), the state-action value func-
tion (Q-function) following π is defined as Qπ(s, a) =
Eπ[
∑T−1
t=0 rentt |s0 = s, a0 = a]. Suppose we have a set of

n tasks indexed by i, i ∈ {0, ..., n}, each task is defined by
an MDP Mi that differs only in their reward function ri. Let
Q
π?i
α be the optimal entropy-regularized Q-function.

Theorem 1. [29] r = {r1, ..., rn} as a set of rewards,
Qπ?

α = {Qπ
?
1
α , ..., Q

π?n
α } is set of Q-functions. Given a set of

non-negative weights w with ||w|| = 1, the optimal Q-function
for a new task defined by r = α log(|| exp(r/α)||w) is given
by

Qπ
?

α = α log(|| exp(Qπ?

α /α)||w), (3)

where || · ||w is the weighted 1-norm.

Corollary 1. [29] maxQπ?

α ↑ Qπ
?

0 as α → 0, where Qπ
?

0 is
the optimal Q-function for the objective J(π) =

∑T−1
t=0 Eπ[rt].

Corollary 1 states that in the low temperature limit, the
maximum of the optimal entropy-regularized Q-functions ap-
proaches the standard optimal Q-function. This means as α→
0, Qπ

?

α = max(Qφ?

α) (The log-sum-exponential expression in
Equation (3) is an approximation of the maximum function
when α > 0). In addition, Equation (1) simply reduces to the
expected sum of rewards in this case.

B. scTLTL and Finite State Automata

We consider tasks specified with syntactically co-safe Trun-
cated Linear Temporal Logic (scTLTL) which is a restricted
version of truncated linear temporal logic(TLTL) [15]. In
particular, we restrict from using the 2 (always) operator.
By doing so, we can establish a correspondence between an
scTLTL formula with a FSA.

Due to space constraints, we do not provide the complete
set of definitions for the Boolean and quantitative semantics
of scTLTL (refer to [15]). Examples of scTLTL include
♦(φa ∧ ♦φb) which entails that eventually φa and then
eventually φb become true (sequencing). Another example
(φa ⇒ ♦φb) U φc means until φc becomes true, φa is true
implies that eventually φb is true.

We denote st ∈ S to be the MDP state at time t, and st:t+k
to be a sequence of states (state trajectory) from time t to
t + k, i.e., st:t+k = stst+1...st+k. scTLTL provides a set of
real-valued functions that quantify the degree of satisfaction
of a given s0:T with respective to a formula φ. This measure
is also referred to as robustness degree or simply robustness
(ρ(s0:T , φ) maps a state trajectory and a formula to a real
number). For example, ρ(s0:3,♦(s < 4)) = max(4 − s0, 4 −

s1, 4 − s2). Here, if 4 − st > 0, then st < 4 is satisfied.
Because ♦(s < 4) requires s < 4 to be true at least once in
the trajectory, hence we take the max over the time horizon. In
general, a robustness of greater than zero implies that st:t+k
satisfies φ and vice versa.

Definition 2. An FSA corresponding to a scTLTL formula φ.
is defined as a tuple Aφ = 〈Qφ,Ψφ, qφ,0, pφ(·|·),Fφ〉, where
Qφ is a set of automaton states; Ψφ is the input alphabet (a
set of first order logic formula); qφ,0 ∈ Qφ is the initial state;
pφ : Qφ ×Qφ → [0, 1] is a conditional probability defined as

pφ(qφ,j |qφ,i) =

{
1 ψqφ,i,qφ,j is true
0 otherwise.

or

pφ(qφ,j |qφ,i, s) =

{
1 ρ(s, ψqφ,i,qφ,j) > 0

0 otherwise.

(4)

Fφ is a set of final automaton states.

Here qφ,i is the ith automaton state ofAφ. ψqφ,i,qφ,j ∈ Ψφ is
the predicate guarding the transition from qφ,i to qφ,j . Because
ψqφ,i,qφ,j is a predicate without temporal operators, the robust-
ness ρ(st:t+k, ψqφ,i,qφ,j) is only evaluated at st. Therefore, we
use the shorthand ρ(st, ψqφ,i,qφ,j) = ρ(st:t+k, ψqφ,i,qφ,j). The
FSA corresponding to a scTLTL formula can be generated
automatically with available packages like Lomap [30] (refer
to [24] for details on the generation procedure).

IV. PROBLEM FORMULATION

Problem 1. Given an MDPM = 〈S,A, p(·|·, ·), r(·, ·, ·)〉 with
unknown transition dynamics p(·|·, ·) and a scTLTL formula
φ, find a policy π?φ such that

π?φ = arg max
πφ

Eπφ [1(ρ(s0:T , φ) > 0)]. (5)

where 1(ρ(s0:T , φ) > 0) is an indicator function with value 1
if ρ(s0:T , φ) > 0 and 0 otherwise.

π?φ in Equation (5) is said to satisfy φ. Problem 1 defines
a policy search problem where the trajectories resulting from
following the optimal policy should satisfy the given scTLTL
formula in expectation. On a high level, our approach is to
construct a product MDP using M and Aφ and learn policy
πφ using the product.

Problem 2. Given two scTLTL formula φ1 and φ2 and their
optimal Q-functions Q?φ1

and Q?φ2
, obtain the optimal policy

π?φφ1∧φ2
that satisfies φ1∧φ2 and π?φφ1∨φ2

that satisfies φ1∨φ2.

Here Q?φ1
and Q?φ2

can be the optimal Q-functions for the
entropy-regularized MDP or the standard MDP. Problem 2
defines the problem of skill composition: given two policies
each satisfying an scTLTL specification, construct the policy
that satisfies the conjunction (−AND−)/disjunction (−OR−)
of the given specifications. Solving this problem is useful when
we want to break a complex task into simple and manageable

components, learn a policy that satisfies each component and
”stitch” all the components together so that the original task is
satisfied. It can also be the case that as the scope of the task
grows with time, the original task specification is amended
with new items. Instead of having to re-learn the task from
scratch, we can learn only policies that satisfies the new items
and combine them with the old policy.

V. FSA AUGMENTED MDP

In this section, we provide a solution to Problem 1 by
constructing an augmented MDP using an FSA (generated
from an scTLTL formula) and the original MDP.

Definition 3. An FSA augmented MDP corresponding
to scTLTL formula φ (constructed from FSA
〈Qφ,Ψφ, q0, pφ(·|·),Fφ〉 and MDP 〈S,A, p(·|·, ·), r(·, ·, ·)〉)
is defined as Mφ = 〈S̃, A, p̃(·|·, ·), r̃(·, ·),Fφ〉, where
S̃ ⊆ S × Qφ, p̃(s̃′|s̃, a) is the probability of transitioning to
s̃′ given s̃ and a,

p̃(s̃′|s̃, a) = p
(
(s′, q′)|(s, q), a

)
=

{
p(s′|s, a) pφ(q′|q, s) = 1

0 otherwise.
(6)

pφ is defined in Equation (4). r̃ : S̃ × S̃ → IR is the FSA
augmented reward function, defined by

r̃(s̃, s̃′) = ρ(s′, Dq
φ), (7)

where Dq
φ =

∨
q′∈Ωq

ψq,q′ represents the disjunction of all
predicates guarding the outgoing transitions that originate
from q (Ωq is the set of automata states that are connected
with q through outgoing edges).

Note that in Equation (7), r̃ is calculated from (s′, q). It is a
measure of the progress of satisfying Dq

φ by taking action a
in state s (encapsulated by s′).

We reduce Problem 1 to finding the optimal policy that
maximizes the expected sum of discounted r̃, i.e.

π?φ = arg max
πφ

Eπφ
[
T−1∑
t=0

γt+1r̃(s̃t, s̃t+1)

]
, (8)

where γ < 1 is the discount factor, T is the time horizon.
Intuitively, the reward function in Equation (7) encourages

the system to exit the current automaton state and move on
to the next, and by doing so eventually reach the final state
qf which satisfies the TL specification (property of FSA)
and hence Equation (5). Note that there can be infinitely
many policies that satisfy Equation (5), π?φ calculated from
Equation (8) will be a subset of that from Equation (5) that
put more value on policies that satisfy the formula with less
number of steps.

The FSA augmented MDP can be constructed with any
standard MDP and an scTLTL formula, and Equation (8)
can be solved with any off-the-shelf RL algorithm. After
obtaining the optimal policy π?φ, executing π?φ(st, qi) without
transitioning the automaton state (i.e. keeping qi fixed) results

in a set of meaningful policies that can be used as is or
composed with other such policies.

VI. AUTOMATA GUIDED SKILL COMPOSITION

Fig. 1 : FSA for (a) φ1 = ♦r∧♦g. (b) φ2 = ♦b. (c) φ∧ = φ1∧φ2.

In this section, we provide a solution for Problem 2 by
constructing the FSA of φφ1∧φ2

from that of Aφ1
and Aφ2

.
Drawing inspiration from the synchronous product automaton
[19], we introduce the following definition.

Definition 4. Given Aφ1
= 〈Qφ1

,Ψφ1
, qφ1,0, pφ1

,Fφ1
〉 and

Aφ2 = 〈Qφ2 ,Ψφ2 , qφ2,0, pφ2 ,Fφ2〉 corresponding to formu-
las φ1 and φ2, the FSA of φ1 ∧ φ2 is the product au-
tomaton of Aφ1

and Aφ1
, i.e. Aφ1∧φ2

= Aφ1
× Aφ2

=
〈Qφ1∧φ2

,Ψφ1∧φ2
, qφ1∧φ2,0, pφ1∧φ2

,Fφ1∧φ2
〉 where Qφ1∧φ2

=
Qφ1 ×Qφ2 is the set of product automaton states, qφ1∧φ2,0 =
(qφ1,0, qφ2,0) is the product initial state, Fφ1∧φ2 = Fφ1 ∩Fφ2

are the final accepting states. Following Definition 2, for states
qφ1∧φ2

= (qφ1
, qφ2

) ∈ Qφ1∧φ2
and q′φ1∧φ2

= (q′φ1
, q′φ2

) ∈
Qφ1∧φ2

, the transition probability pφ1∧φ2
(q′φ1∧φ2

|qφ1∧φ2
)

(written as p due to space constraints) is defined as

p =

{
1 pφ1(q′φ1

|qφ1)pφ2(q′φ2
|qφ2) = 1

0 otherwise.
(9)

Example 1. Figure 1 illustrates the FSA of Aφ1and Aφ2 and
their product automaton Aφ1∧φ2

. Here φ1 = ♦r ∧ ♦g which

entails that both r and g needs to be true at least once (order
does not matter), and φ2 = ♦b means that b eventually needs
to be true. The resultant product corresponds to the formula
φ = (♦r∧♦g)∧♦b. (qφ1,f , qφ2,f) is to be reached to satisfy
φ1 ∧φ2. However, if φ1 ∨φ2 is the goal, then reaching any of
the states with qφi,f , i ∈ {1, 2} satisfies the goal (Fφ1∨φ2 =
Fφ1 ∪ Fφ2).

We provide the following theorem on automata guided skill
composition:

Theorem 2. Let Qπ?

φ = {Qπ
?
1

φ1
, ..., Q

π?n
φn
} be a set with entries

Q
π?i
φi

being the optimal Q-function for the FSA augmented
MDP Mφi . The optimal Q-function for Mφ∧ where φ∧ =∧
i φi is Qπ

?
∧
φ∧

= max(Qπ?

φ).

Proof: For qφ∧ = (qφ1
, qφ2

) ∈ Qφ∧ , let Ψqφ∧
, Ψqφ1

and
Ψqφ2

denote the set of predicates guarding the edges originat-
ing from qφ∧ , qφ1 and qφ2 respectively. Equation (9) entails
that a transition at qφ∧ in the product automaton Aφ∧ exists
only if corresponding transitions at qφ1

, qφ2
exist in Aφ1

and
Aφ2

respectively. Therefore, ψqφ∧ ,q′φ∧ = ψqφ1 ,q′φ1
∧ ψqφ2 ,q′φ2 ,

for ψqφ∧ ,q′φ∧ ∈ Ψqφ∧
, ψqφ1 ,q′φ1

∈ Ψqφ1
, ψqφ2 ,q′φ2

∈ Ψqφ2
(here

q′φi is a state such that pφi(q
′
φi
|qφi) = 1). Therefore, we have

D
qφ∧
φ∧

=
∨

q′φ1
,q′φ2

(ψqφ1 ,q′φ1
∧ ψqφ2 ,q′φ2) (10)

where q′φ1
, q′φ2

don’t equal to qφ1 , qφ2 at the same time (to
avoid self looping edges). Using the fact that ψqφi ,qφi =
¬

∨
q′φi
6=qφi

ψqφi ,q
′
φi

and repeatedly applying the distributive laws

(∆∧Ω1)∨(∆∧Ω2) = ∆∧(Ω1∨Ω2) and (∆∨Ω1)∧(∆∨Ω2) =
∆ ∨ (Ω1 ∧ Ω2) to Dqφ∧

φ∧
, we arrive at

D
qφ∧
φ∧

=
(∨
q′φ1
6=qφ1

ψqφ1 ,q′φ1

)
∨
(∨
q′φ2
6=qφ2

ψqφ2 ,q′φ2

)
= D

qφ1
φ1
∨Dqφ2

φ2
.

(11)

Let r̃φ∧ , r̃φ1 , r̃φ2 and s̃φ∧ , s̃φ1 , s̃φ2 be the reward functions
and states for the FSA augmented MDPs Mφ∧ ,Mφ1

,Mφ2

respectively. sφ∧ , sφ1
, sφ2

are the states for the corresponding
MDPs. Plugging Equation (11) into Equation (7) and using
the robustness definition for disjunction results in

r̃φ∧(s̃φ∧ , s̃
′
φ∧

) = ρ(s′φ∧
, D

qφ∧
φ∧

)

= ρ(s′φ∧
, D

qφ1
φ1
∨Dqφ2

φ2
)

= max
(
ρ(s′φ1

, D
qφ1
φ1

), ρ(s′φ2
, D

qφ2
φ2

)
)

= max
(
r̃φ1

(s̃φ1
, s̃′φ1

), r̃φ2
(s̃φ2

, s̃′φ2
)
)
.

(12)

Looking at Theorem 1, the log-sum-exponential of the com-
posite reward r = α log(|| exp(r/α)||w) is an approximation
of the maximum function. In the low temperature limit we
have r → max(r) as α→ 0. Applying Corollary 1 results in
Theorem 2.

Similar to Corollary 1, Theorem 2 does not require entropy-
regularized RL and can be applied to any actor-critic methods.

Having obtained the optimal Q-function, a policy can be
constructed by taking the greedy step with respective to
the Q-function in the discrete action case. For the case of
continuous action space where the policy is represented by a
function approximator, the policy update procedure in actor-
critic methods can be used to extract a policy from the Q-
function.

As is mentioned in Example 1, −AND− and −OR− task
compositions follow the same procedure in our framework
(Theorem 2). The only difference is the termination condition.
For −AND− tasks, the final set of states Fφ∧ =

⋂
Fφi (i.e.

all the constituent FSAs are required to reach their final states).
Whereas for −OR− tasks Fφ∨ =

⋃
Fφi . A summary of the

composition procedure is provided in Algorithm 1.

Algorithm 1 Automata Guided Skill Composition

1: Inputs: scTLTL task specification φ1 and φ2, randomly
initialized policies πφ1

, πφ2
and action-value functions

Q
πφ1
φ1

, Qπφ2φ2
. State and action spaces of the MDP.

2: Construct FSA augmented MDPs Mφ1 and Mφ2 .
using Definition 3

3: π?φ1
, Q

π?φ1
φ1

,Bφ1
← ActorCritic(Mφ1

) . learns the
optimal policy and Q-function

4: π?φ2
, Q

π?φ2
φ2

,Bφ2
← ActorCritic(Mφ2

)

5: Q
π?φ2∧φ2
φ2∧φ2

= max(Q
π?φ1
φ1

, Q
π?φ2
φ2

) . construct the optimal
composed Q-function using Theorem 2

6: Bφ∧ ← ConstructProductBuffer(Bφ1
,Bφ2

)

7: π?φ2∧φ2
← ExtractPolicy(Q

π?φ2∧φ2
φ2∧φ2

,Bφ∧)
8: return π?φ2∧φ2

In Algorithm 1, steps 3 and 4 seeks to obtain the optimal
policies and Q-functions using an off-policy actor-critic al-
gorithm. Bφ1

and Bφ2
are the replay buffers collected while

training for each skill. Step 6 constructs the product replay
buffer for policy extraction. This step is necessary because
each Bφi contains state of form (s, qi), i ∈ {1, 2} whereas the
composed policy takes state (s, q1, q2) as input (Definition 4).
Therefore, we transform each experience ((s, qi), a, (s

′, q′i), r)
to ((s, qi, qj 6=i), a, (s

′, q′i, q
′
j 6=i), r) where qj 6=i is chosen at ran-

dom from the automaton states of Aφj and q′j 6=i is calculated
using Equation (6). The reward r will not be used in policy
extraction as the composed Q-function will not be updated.
Step 7 extracts the optimal composed policy from the optimal
composed Q-function (this corresponds to running only the
policy update step in the actor critic algorithm).

VII. CASE STUDIES

In this section, We evaluate our automata guided learning
and composition methods. The first environment is a simple
2D grid world environment that is used for proof of con-
cept and policy visualization. The second environment is a
robot manipulation environment. In all experiments, we use
Lomap [30] to automatically translate an scTLTL specification
to its corresponding FSA.

A. Grid World

Consider an agent that navigates in a 8× 10 grid world as
shown in Figure 3 . Its MDP states (x, y) are the agent’s inte-
ger coordinates on the grid. The agent’s actions include A =
{up, down, left, right, stay}. The transitions are such that for
each action command, the agent follows that command with
probability 0.8 or chooses a random action with probability
0.2. We train the agent on two tasks, φ1 = ♦r ∧ ♦g and
φ2 = ♦b (same as in Example 1). The regions are defined by
the predicates r = (1 < x < 3) ∧ (1 < y < 3), g = (4 <
x < 6) ∧ (4 < y < 6) and b = (1 < x < 3) ∧ (6 < y < 8).
Because the coordinates are integers, a and b define a point
goal rather than regions.

We apply standard tabular Q-learning [31] on the FSA
augmented MDP of this environment. For all experiments, we
use a discount factor of 0.95, learning rate of 0.1, episode
horizon of 200 steps, a random exploration policy and a
total number of 2000 update steps which is enough to reach
convergence (learning curve is neglected).

Figure 3 (a) and (b) show the learned optimal
policies obtained using the FSA augmented
MDP in the form of sub-policies extracted using
π?φi(x, y, qφi) = arg max

a
Q?φi(x, y, qφi , a). We can observed

that each π?φi(x, y, qφi) has goals given by Equation (7).
The agent starts at qφi,0, i ∈ {1, 2}, by reaching these goals
and transitioning on the FSA, the specification is eventually
satisfied.

Figure 3 (c) shows the composed policy for task φ∧ =
φ1∧φ2 obtained using Theorem 2. It is clear that the composed
policy is able to act optimally in terms of maximizing the
expected sum of discounted reward given by Equation (12).
Following the composed policy and transitioning on the FSA
in Figure 1 (c) leads to satisfaction of φ∧ (−AND−). As
discussed in the previous section, if the −OR− task is desired,
following the same composed policy and terminating at any of
the states qφ∧,2, qφ∧,4, qφ∧,5, qφ∧,6, qφ∧,f will satisfy φ∨ =
φ1 ∨ φ2.

B. Robotic Manipulation

1) Experiment Setup: Figure 2 shows our experiment
setup. Our policy controls the 7 degree-of-freedom joint veloc-
ities of the right arm of a Baxter robot. In front of the robot
there are three circular regions (red, green, blue plates) and
it has to learn to traverse the regions in user specified ways.
The positions of the plates are tracked using a motion capture
system and thus fully observable. In addition, we also track the
position of one of the user’s hands (by wearing a glove with
trackers attached). Our MDP state space is 22 dimensional
that includes 7 joint angles, xyz positions of the three regions
(denoted by pr, pg , pb), the user’s hand (ph) and the robot’s
end-effector (pee). The state and action spaces are continuous
in this case. We train in simulation using the V-REP simulator
(Figure 2 (a)) [23] and evaluate the policies on the real robot.

We define the following predicates

Fig. 2 : (a) Simulation setup. (b) Sample execution of φtraverse with FSA transitions shown. The shaded q state represents the current
automaton state (the FSAs here are the same as in Figure 4 (a), they are included to demonstrate the transitions).

Fig. 3 : Policies for (a) φ1 = ♦r ∧ ♦g. (b) φ2 = ♦b. (c) φ∧ =
φ1 ∧ φ2. The agent moves in a 8 × 10 gridworld with 3 labeled
regions. The agent has actions {up, down, left, right, stay} where the
directional actions are represented by arrows, stay is represented by
the blue dot.

1) ψi = ||pi − pee|| < ε, i ∈ {r, g, b, h} where r, g, b
denotes the color of the regions. h represents the user’s
hand. ε is a threshold which we set to be 5 centimeters.
ψi constrains the relative distance between the robot’s
end-effector and the selected object.

2) ψhand in sight = (xmin < phx < xmax)∧(ymin < phy <
ymax) ∧ (zmin < phz < zmax). This predicate evaluates
to true if the user’s hand appears in the cubic region
defined by [xmin, xmax, ymin, ymax, zmin, zmax].

We test our method on the following composition task
1) φtraverse = ♦(ψr ∧ ♦(ψg ∧ ♦ψb))

Description: traverse the three regions in the order of
red, green and blue.

2) φinterrupt = (ψhand in sight ⇒ ♦ψh) U ψb
Description: before reaching the blue region, if the user’s
hand appears in sight, then eventually reach for the
user’s hand, otherwise just reach for the blue region.

3) φ∧ = φtraverse ∧ φinterrupt
Description: conjunction of the first two tasks.

The FSAs for φtraverse and φinterrupt are presented in
Figure 4 . The FSA for φ∧ (14 nodes and 72 edges) is not

presented here due to space constraints.

Fig. 4 : The FSA for (a):φtraverse = ♦(ψr ∧ ♦(ψg ∧ ♦ψb)) (b)
φinterrupt = (ψhand in sight ⇒ ♦ψh) U ψb.

2) Implementation Details: The policies and Q-functions
for all tasks in this section are represented by a feed-forward
neural network (3 layers with 300, 200, 100 ReLU units
respectively). For tasks φtraverse and φinterrupt, the input
state space is 23 dimensional (22 continuous dimensional
MDP state and 1 discrete dimension for the automaton state).
For task φ∧, the state space is 24 dimensional (2 discrete
dimensions for the product automaton state).

We use soft actor-critic (sac) [11] and deep deterministic
policy gradient [16] to train the FSA augmented MDP for
each of the two tasks. Implementation of the soft actor-critic
algorithm follows [28]. Algorithm 1 is used to obtain the
policy for φ∧. After each episode, the joint angles, the FSA
state, the position of the plates as well as the position of the
hand are randomly reinitialized (within certain boundaries) to

Fig. 5 : Average episode length as a function of policy update
steps for task φtraverse (smaller number means faster completion
of the task). The mean and standard deviation are calculated from 5
episodes. Training is performed in simulation.

ensure generalization across different task configurations. The
robot is controlled at 20 Hz. Each episode is 100 time-steps
(about 5 seconds). The episode restarts if the final automaton
state qf is reached. During training, we perform 100 policy
and Q-function updates with a batch of 5 trajectories. All of
our training is performed in simulation and for this set of tasks,
the policy is able to transfer to the real robot without further
fine-tuning.

3) Comparison Cases: To evaluate our method and the
effectiveness of the reward in Equation (7), we compare with
a baseline reward of the form r̃b(s̃, s̃

′) = 1(q′ 6= q) − δ,
(0 < δ < 1) where 1() is the indicator function. In the com-
parison case, the agent receives a reward of 1−δ if a transition
is made in the FSA, else it obtains a small negative reward −δ
for each step taken (we use δ = 0.2). We acknowledge that
with enough effort, an efficient reward for any task can be
manually designed. Our goal here is to automatically generate
dense rewards given high level specifications. Therefore, we do
not put much effort in designing a reward for the comparison
case.

To evaluate the automata guided skill composition, we
compare the composed policy for task φ∧ with a policy for
the same task learned from scratch. We also compare our
composition method with the average Q-function composition
proposed in [10].

The method we propose is a modification on the MDP that
can be trained with existing RL algorithms. Therefore, we try
to keep the RL algorithm fixed for fair comparisons.

4) Results and Discussion: Learning curves are presented
in Figure 5 and Figure 6 . The episode length is used as the
evaluation metric because we are comparing 2 different reward
formulations (there is a scale difference in the discounted
return). An episode is terminated either when the horizon is
reached (100 steps) or the final state in the FSA is reached.
Therefore, a shorter episode length indicates faster completion
of the task. In the figures, we denote training with reward r̃
in Equation (7) as Ours. Training with reward r̃b is referred

Fig. 6 : Average episode length as a function of policy update steps
for task φinterrupt

Fig. 7 : Evaluation success rate on the real robot over 20 trials for
tasks φtraverse and φinterrupt.

to as Baseline.
We can observe from the learning curves that our reward

formulation is able to eventually complete both tasks with
consistency whereas using the baseline reward fails to learn
either task. This is largely due to the fact that the robustness
degree used to formulate r̃ provides a continuous measure
of satisfaction which is a dense reward signal. In general,
φinterrupt is easier to satisfy than φtraverse as the former
takes less FSA transitions to reach the final state. This is also
reflected in the results. Figure 2 (b) shows an execution trace
of task φtraverse with the corresponding transitions on the
FSA. Figure 6 shows the success rate of 20 evaluation trials
for both tasks on the real robot.

Figure 9 shows the learning curves for the composed task
φ∧. In the figure, ddpg and sac denote learning φ∧ from
scratch using the FSA augmented MDP. max represents task
composition using Algorithm 1 (we use the maximum of the
Q-functions for composition) and average represents task com-
position using the average of the Q-functions [9]. sac+average
means average Q-composition using policies learned from soft
actor-critic. Composition is limited to 40K updates whereas
learning from scratch is allowed 100K updates.

We can observe that given the allowed training time, nor

Fig. 8 : An execution trace of of the composed policy for task φ∧ =
φtraverse ∧ φinterrupt.

ddpg or sac is able to learn the task from scratch. This is
likely due to the large size of the FSA (14 nodes and 72
edges). However, we are able to obtain satisfying policies for
all composition case. Within our experiments, the automata
guided skill composition with ddpg (ddpg+max) results in
fastest learning and lowest variance compared to the others.
sac+max is able to perform comparatively with slightly higher
variance (due to the stochastic nature of the policy). Composi-
tion using the averaged Q-functions is also able to obtain the
skill but requires more steps to complete the task. This set of
results show that our framework is compatible with different
composition methods while imposing no constraints on the
policy structure. Figure 10 shows the evaluation success rates
on the real robot.

Figure 8 shows an execution trace for task φ∧ using the
composed policy. Notice that when the robot detects that the
user’s hand appears in the region defined by ψhand in sight,
it stops the traverse task to satisfy the interrupt task. After it
reaches for the user’s hand, it goes on to satisfy the rest of
the specification.

It is important to note that the number of policy updates
does not translate directly to training wall-time. Because
composition is performed on collected data from training
the constituent policies, no further exploration is necessary
(which is the time bottleneck in our case). In our experiments,
exploration and data collection take about three quarter of the
entire training time (around 3 hours).

We would like to point out that even though Figure 9
suggests that learning φ∧ from scratch failed in the allocated
time, the agents are in fact making progress in terms of
increasing discounted return. Running these experiments for
200K update steps result in policies with around 40% success
rate for task φ∧.

A potential drawback of our composition method (or any
such methods based on combining Q-functions) is scale sen-
sitivity. In our experiments, the reward used to train φtraverse
and φinterrupt is of the same scale. If this condition does not
hold (one task has rewards orders of magnitude larger than
the other), simply combining Q-functions will not result in
the desired policy. We also face the problem of dimensional
explosion of automaton states when composing many policies.
These are interesting problems to look at in the future.

Fig. 9 : Learning/composition curve for task φ∧. Here ddpg and sac
denote learning of φ∧ from scratch using the FSA augmented MDP.
max indicates task composition using Algorithm 1. average indicates
task composition using the average of the Q-functions [9].

Fig. 10 : Evaluation success rates on the real robot over 20 trials for
the composition task φ∧.

VIII. CONCLUSION

In this paper, we present a framework that supports learning
of tasks specified as an scTLTL formula. This includes task
structures such as temporal sequencing, choices, ambiguity
and combinations of them. We also introduce a method to
compose policies learned with our framework to obtain new
skills without additional exploration. We have shown the
applicability of our techniques in learning and composing
robotic manipulation policies. Future work includes extending
this framework to support full TLTL specifications over states
and actions. We also plan to apply this framework to learning
of more complex tasks to fully explore its potential.

REFERENCES

[1] Derya Aksaray, Austin Jones, Zhaodan Kong, Mac
Schwager, and Calin Belta. Q-learning for robust
satisfaction of signal temporal logic specifications.
In Decision and Control (CDC), 2016 IEEE 55th
Conference on, pages 6565–6570. IEEE, 2016.

[2] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers,
Bettina Könighofer, Scott Niekum, and Ufuk Topcu. Safe
reinforcement learning via shielding. In AAAI, 2018.

[3] Jacob Andreas, Dan Klein, and Sergey Levine. Modular
multitask reinforcement learning with policy sketches. In
ICML, 2017.

[4] Alberto Camacho, Oscar Chen, Scott Sanner, and
Sheila A McIlraith. Decision-making with non-
markovian rewards: From ltl to automata-based re-
ward shaping. In Proceedings of the Multi-disciplinary
Conference on Reinforcement Learning and Decision
Making (RLDM), pages 279–283, 2017.

[5] Marco Da Silva, Frédo Durand, and Jovan Popović.
Linear bellman combination for control of character
animation. Acm transactions on graphics (tog), 28(3):
82, 2009.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In ICML, 2017.

[7] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and
Fabio Patrizi. Reinforcement learning for ltlf/ldlf goals.
CoRR, abs/1807.06333, 2018.

[8] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and
Sergey Levine. Reinforcement learning with deep
energy-based policies. In ICML, 2017.

[9] Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza
Dalal, Pieter Abbeel, and Sergey Levine. Composable
deep reinforcement learning for robotic manipulation.
CoRR, abs/1803.06773, 2018.

[10] Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza
Dalal, Pieter Abbeel, and Sergey Levine. Composable
deep reinforcement learning for robotic manipulation.
arXiv preprint arXiv:1803.06773, 2018.

[11] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen,
George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey
Levine. Soft actor-critic algorithms and applications.
CoRR, abs/1812.05905, 2018.

[12] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano,
and Sheila McIlraith. Using reward machines for high-
level task specification and decomposition in reinforce-
ment learning. In International Conference on Machine
Learning, pages 2112–2121, 2018.

[13] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian
Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
and Sergey Levine. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. CoRR,
abs/1806.10293, 2018.

[14] Tejas D. Kulkarni, Karthik R. Narasimhan, Ardavan
Saeedi, and Joshua B. Tenenbaum. Hierarchical Deep
Reinforcement Learning: Integrating Temporal Abstrac-
tion and Intrinsic Motivation. preprint arXiv:1604.06057,
2016.

[15] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Rein-
forcement learning with temporal logic rewards. arXiv
preprint arXiv:1612.03471, 2016.

[16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. CoRR, abs/1509.02971, 2015.

[17] Jeffrey Mahler, Matthew Matl, Xinyu Liu, Albert Li,
David V. Gealy, and Kenneth Y. Goldberg. Dex-net 3.0:
Computing robust robot suction grasp targets in point
clouds using a new analytic model and deep learning.
CoRR, abs/1709.06670, 2017.

[18] Andrychowicz Marcin, Bowen Baker, Maciek Chociej,
Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur
Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas
Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,
Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. arXiv preprint arXiv:1808.00177,
2018.

[19] Vince Molnár and András Vörös. Synchronous product
automaton generation for controller optimization.

[20] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell.
Policy invariance under reward transformations: Theory
and application to reward shaping. In ICML, 1999.

[21] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
van de Panne. Deepmimic: example-guided deep re-
inforcement learning of physics-based character skills.
ACM Trans. Graph., 37:143:1–143:14, 2018.

[22] Ivaylo Popov, Nicolas Heess, Timothy P. Lillicrap,
Roland Hafner, Gabriel Barth-Maron, Matej Vecerik,
Thomas Lampe, Yuval Tassa, Tom Erez, and Martin A.
Riedmiller. Data-efficient deep reinforcement learning
for dexterous manipulation. CoRR, abs/1704.03073,
2017.

[23] Eric Rohmer, Surya P. N. Singh, and Marc Freese. V-
rep: A versatile and scalable robot simulation framework.
2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1321–1326, 2013.

[24] Kristin Yvonne Rozier. Explicit or symbolic translation
of linear temporal logic to automata. PhD thesis, Rice
University, 2013.

[25] John Schulman, Pieter Abbeel, and Xi Chen. Equivalence
between policy gradients and soft q-learning. CoRR,
abs/1704.06440, 2017.

[26] Tianmin Shu, Caiming Xiong, and Richard Socher. Hier-
archical and interpretable skill acquisition in multi-task
reinforcement learning. CoRR, abs/1712.07294, 2017.

[27] Emanuel Todorov. Compositionality of optimal control
laws. In Advances in Neural Information Processing
Systems, pages 1856–1864, 2009.

[28] Kristian Hartikainen George Tucker Sehoon Ha Jie Tan

Vikash Kumar Henry Zhu Abhishek Gupta Pieter Abbeel
Tuomas Haarnoja, Aurick Zhou and Sergey Levine. Soft
actor-critic algorithms and applications. Technical report,
2018.

[29] Benjamin van Niekerk, Steven James, Adam Christopher
Earle, and Benjamin Rosman. Will it blend? compos-
ing value functions in reinforcement learning. CoRR,
abs/1807.04439, 2018.

[30] C Vasile. Github repository, 2017.
[31] Christopher John Cornish Hellaby Watkins. Learning

From Delayed Rewards. PhD thesis, King’s College,
Cambridge, England, 1989.

[32] Min Wen, Ivan Papusha, and Ufuk Topcu. Learning
from demonstrations with high-level side information. In
IJCAI, 2017.

[33] Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox,
Li Fei-Fei, Abhinav Gupta, Roozbeh Mottaghi, and Ali
Farhadi. Visual semantic planning using deep successor
representations. arXiv preprint ArXiv:1705.08080, pages
1–13, 2017.

	Introduction
	Related Work
	Preliminaries
	Entropy-Regularized Reinforcement Learning and Q-Composition
	scTLTL and Finite State Automata

	Problem Formulation
	FSA Augmented MDP
	Automata Guided Skill Composition
	Case Studies
	Grid World
	Robotic Manipulation
	Experiment Setup
	Implementation Details
	Comparison Cases
	Results and Discussion

	Conclusion

